MATHEMATICS IN EVERYDAY LIFE-7

Chapter 9 : Ratio and Proportion

ANSWER KEYS

(L.C.M. of 5 and 6 is 30)

(:: 8 < 9)

(:: 25 > 12)

CORDO

EXERCISE 9.1 Now, $\frac{8}{12} < \frac{9}{12}$ 1. :: In 2 hours, car covers a distance = 72 km $\Rightarrow \frac{2}{3} < \frac{3}{4}$ Hence, 3 : 4 is greater. \therefore In 1 hour, car will cover a distance = $\frac{72}{2}$ km (*iii*) $2:5 = \frac{2}{5}$ and $5:6 = \frac{5}{6}$ = 36 km Therefore, speed of car = 36 km/hour : In 3 hours, train covers a distance = 120 km $\therefore \qquad \frac{2}{5} = \frac{2 \times 6}{5 \times 6} = \frac{12}{30}$ \therefore In 1 hour, train will cover a distance = $\frac{120}{3}$ km and $\frac{5}{6} = \frac{5 \times 5}{6 \times 5} = \frac{25}{30}$ = 40 kmTherefore, speed of train = 40 km/hour Now, $\frac{25}{30} > \frac{12}{30}$ Now, ratio of their speeds = speed of car : speed of train = 36:40Hence, 5:6 is greater. $=\frac{36}{40}=\frac{36\div 4}{40\div 4}=\frac{9}{10}$ **3.** (i) $\frac{6}{15} = \frac{2}{15} = \frac{2}{45}$ (:: H.C.F. of 36 and 40 is 4) Now, $\frac{6}{15} = \frac{2}{\Box}$ Hence, ratio of their speeds = 9 : 10. Let the missing number be *x*. **2.** (i) $4:7 = \frac{4}{7}$ and $5:8 = \frac{5}{8}$ $\therefore \qquad \frac{6}{15} = \frac{2}{x}$ $\Rightarrow \qquad 6 \times x = 2 \times 15 \text{ (By cross-multiplication)}$ $\Rightarrow \qquad 6x = 30$ (L.C.M. of 7 and 8 is 56) $\therefore \qquad \frac{4}{7} = \frac{4 \times 8}{7 \times 8} = \frac{32}{56}$ $\Rightarrow \qquad x = \frac{30}{6} = 5$ and $\frac{5}{8} = \frac{5 \times 7}{8 \times 7} = \frac{35}{56}$ Again, $\frac{6}{15} = \frac{1}{45}$ Now, $\frac{35}{56} > \frac{32}{56}$ (:: 35 > 32) Let the missing number be *y*. $\therefore \qquad \frac{6}{15} = \frac{y}{45}$ $\Rightarrow \quad 6 \times 45 = 15 \times y \text{ (By cross-multiplication)}$ $\Rightarrow \qquad \frac{5}{8} > \frac{4}{7}$ Hence, 5:8 is greater. \Rightarrow $y = \frac{6 \times 45}{15} = 18$ (*ii*) $2:3=\frac{2}{3}$ and $3:4=\frac{3}{4}$ Hence, $\frac{6}{15} = \frac{2}{5} = \frac{18}{45}$ (L.C.M. of 3 and 4 is 12) $\therefore \qquad \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$ (*ii*) $\frac{6}{18} = \frac{1}{3} = \frac{18}{10}$ and $\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$ Now, $\frac{6}{18} = \frac{1}{2}$

Mathematics In Everyday Life-7

Let the missing number be *x*.

$$\therefore \qquad \frac{6}{18} = \frac{x}{3}$$

$$\Rightarrow \qquad 6 \times 3 = 18 \times x$$

$$\Rightarrow \qquad x = \frac{6 \times 3}{18} = 1$$
Again,
$$\frac{6}{18} = \frac{18}{\Box}$$
Let the missing number be y.
Then,
$$\frac{6}{18} = \frac{18}{y}$$

$$\Rightarrow \qquad 6 \times y = 18 \times 18$$

$$\Rightarrow \qquad y = \frac{18 \times 18}{6}$$

$$\Rightarrow \qquad y = 54$$
Hence,
$$\frac{6}{18} = \frac{11}{3} = \frac{18}{54}$$

- **4.** The given ratios are 5 : 4, 7 : 6, 3 : 2, 5 : 8
 - or $\frac{5}{4}, \frac{7}{6}, \frac{3}{2}, \frac{5}{8}$

L.C.M. of 4, 6, 2 and 8 is 24.

$$\therefore \qquad \frac{5}{4} = \frac{5 \times 6}{4 \times 6} = \frac{30}{24}$$
$$\frac{7}{6} = \frac{7 \times 4}{6 \times 4} = \frac{28}{24}$$
$$\frac{3}{2} = \frac{3 \times 12}{2 \times 12} = \frac{36}{24}$$
$$\frac{5}{8} = \frac{5 \times 3}{8 \times 3} = \frac{15}{24}$$

- The denominators are same. ÷
- The given ratios in ascending order are *.*..

$$\frac{15}{24}, \frac{28}{24}, \frac{30}{24}, \frac{36}{24}$$

$$\Rightarrow \quad \frac{5}{8}, \frac{7}{6}, \frac{5}{4}, \frac{3}{2}$$

т т

Hence, 5 : 8, 7 : 6, 5 : 4, 3 : 2 are in ascending order.
6 : 7 =
$$\frac{6}{7}$$
 and 3 : 4 = $\frac{3}{4}$
L.C.M. of 7 and 4 is 28.
 $\therefore \qquad \frac{6}{7} = \frac{6 \times 4}{7 \times 4} = \frac{24}{28}$
and $\frac{3}{4} = \frac{3 \times 7}{4 \times 7} = \frac{21}{28}$
Now, $\frac{24}{28} > \frac{21}{28}$ ($\because 24 > 21$)
 $\Rightarrow \qquad \frac{6}{7} > \frac{3}{4}$
Hence, 6 : 7 > 3 : 4.

$$\therefore 12: 15 = \frac{12}{15} = \frac{12 \div 3}{15 \div 3} = \frac{4}{5}$$

and
$$\frac{4}{5} = \frac{4 \times 4}{5 \times 4} = \frac{16}{20}$$
$$\frac{16}{20} = \frac{16 \times 2}{20 \times 2} = \frac{32}{40}$$
$$\frac{4}{5} = \frac{4 \times 5}{5 \times 5} = \frac{20}{25}$$
Hence,
$$\frac{12}{15} = \frac{4}{5} = \frac{16}{20} = \frac{20}{25} = \frac{32}{40}$$

Hence, four equivalent ratios of 12:15, 4:5, 16:20, 20:25 and 32:40.

7. Total number of students = 48Number of passed students = 16

6.

- \therefore Number of failed students = 48 16 = 32
- (i) Ratio between passed students to the total number of students = $\frac{16}{48} = \frac{16 \div 16}{48 \div 16} = \frac{1}{3} = 1:3$
- (ii) Ratio between failed students to the number of

passed students =
$$\frac{32}{16} = \frac{32 \div 16}{16 \div 16} = \frac{2}{1} = 2 : 1$$

8. If A : B = 2 : 3, B : C = 5 : 6 \cdot $A: C = A: B \times B: C$

$$=\frac{2}{3}\times\frac{5}{6}=\frac{5}{9}$$

Hence, A : C = 5 : 9

9. Given that : 3A = 4B = 5CWe divide by L.C.M. of 3, 4 and 5 is 60.

$$\frac{3A}{60} = \frac{4B}{60} = \frac{5C}{60}$$

$$\frac{A}{20} = \frac{B}{15} = \frac{C}{12}$$

Hence, A : B : C = 20 : 15 : 12

10. We have, A : B = 3 : 4, B : C = 5 : 7Now, A: B = 3: 4

$$B: C = 5: 7 = 1: \frac{7}{5} = 4: \frac{28}{5}$$

Now, $A: B: C = 3: 4: \frac{28}{5}$

$$= 3 \times 5 : 4 \times 5 : \frac{28}{5} \times 5$$

Hence, A : B : C = 15 : 20 : 28

Answer Keys

5.

EXERCISE 9.2

1. Let the antecedent be *x*. The consequent = 91 Then 8: 13 = x: 91 $\Rightarrow \frac{8}{13} = \frac{x}{91}$ $\Rightarrow 8 \times 91 = x \times 13$ (By cross multiplication) $\Rightarrow x = \frac{8 \times 91}{13}$ $\Rightarrow x = 56$ Hence, antecedent = 56.

2. Sum of the terms of ratio = 3 + 2 = 5Now, Rishi's share = $\frac{3}{5} \times ₹3500$

 $= ₹(700 \times 3)$ = ₹2100And Saurav's share = $\frac{2}{5} \times ₹3500$

Hence, Rishi will get ₹2100 and Saurav will get ₹1400.

3. Sum of the terms of ratio = 4 + 5 = 9. Sum of the two numbers = 459

Now, first number =
$$\frac{4}{9} \times 459$$

= 4×51
= 204
Second number = $\frac{5}{9} \times 459$
= 5×51
= 255

Hence, the required two numbers are 204 and 255. 4. Total money = ₹3600.

Sum of the terms of ratio = 2 + 3 + 4 = 9

$$A's \text{ share} = \frac{2}{9} \times ₹3600$$
$$= ₹(2 \times 400)$$
$$= ₹800$$
$$B's \text{ share} = \frac{3}{9} \times ₹3600$$
$$= ₹(3 \times 400)$$
$$= ₹1200$$
$$C's \text{ share} = \frac{4}{9} \times ₹3600$$
$$= ₹(4 \times 400)$$
$$= ₹1600$$

 Let the required number to be added to each term of the ratio be *x*. Therefore,

Mathematics In Everyday Life-7

- $\frac{9+x}{16+x} = \frac{2}{3}$ $\Rightarrow \quad 3(9+x) = 2(16+x)$ (By cross multiplication) 27 + 3x = 32 + 2x $\Rightarrow \quad 3x 2x = 32 27$ (By transposing) x = 5Hence, the number 5 must be added.
- **6.** Let the required number to be added to each term of ratio be *x*.

Now, (8 + x) : (11 + x) = 4 : 5 $\frac{8+x}{11+x} = \frac{4}{5}$ \Rightarrow 5(8 + x) = 4(11 + x) \Rightarrow (By cross multiplication) 40 + 5x = 44 + 4x \Rightarrow 5x - 4x = 44 - 40 \Rightarrow (Transposing 4x to L.H.S. and 40 to R.H.S.) x = 4 \Rightarrow Hence, the number 4 must be added to each term of given ratio. 7. Let the required number to be subtracted be *x*. Therefore, (15 - x) : (33 - x) = 2 : 5 $\frac{15-x}{33-x} = \frac{2}{5}$ \Rightarrow 5(15 - x) = 2(33 - x) \Rightarrow (By cross multiplication) 75 - 5x = 66 - 2x \Rightarrow -5x + 2x = 66 - 75(By transposing) \Rightarrow -3x = -9 \Rightarrow

$$\Rightarrow \qquad x = 3$$

Hence, number 3 must be subtracted from each term of the ratio.

Let the number be to subtracted from each term of given ratio be *x*.

$$(19 - x) : (21 - x) = 7 : 8$$

$$\Rightarrow \frac{19 - x}{21 - x} = \frac{7}{8}$$

$$\Rightarrow 8(19 - x) = 7(21 - x)$$
(By cross multiplication)
$$\Rightarrow 152 - 8x = 147 - 7x$$

$$\Rightarrow -8x + 7x = 147 - 152$$
(By transposing)
$$\Rightarrow -x = -5$$

$$\Rightarrow x = 5$$
Hence number 5 must be subtracted from each term

Hence, number 5 must be subtracted from each term of given ratio.

 9. Sum of the terms of ratio = 3 + 5 + 7 = 15 Total money = ₹4500

A's share =
$$\frac{3}{15} \times ₹4500$$

= ₹ $\left(\frac{3}{15} \times 4500\right)$

$$= ₹(3 × 300) = ₹900$$

B's share = ₹ $\left(\frac{5}{15} × 4500\right) = ₹(5 × 300) = ₹1500$
C's share = ₹ $\left(\frac{7}{15} × 4500\right) = ₹(7 × 300) = ₹2100$
Given : x : y = 4 : 7

Let x = 4k and y = 7k, where k is the constant of proportionality.

$$\therefore (4x + 5y) : (5x + 3y) = \frac{4x + 5y}{5x + 3y}$$
$$= \frac{4(4k) + 5(7k)}{5(4k) + 3(7k)}$$
$$= \frac{16k + 35k}{20k + 21k}$$
$$= \frac{51k}{41k} = \frac{51}{41}$$
Hence, $4x + 5y : 5x + 3y = 51 : 41$.

11. Given : x : y = 5 : 8

10.

Let x = 5k and y = 8k, where k is the constant of proportionality.

$$\therefore (4x - 2y) : (7x - 3y) = \frac{4x - 2y}{7x - 3y}$$
$$= \frac{4(5k) - 2(8k)}{7(5k) - 3(8k)}$$
$$= \frac{20k - 16k}{35k - 24k}$$
$$= \frac{4k}{11k} = \frac{4}{11}$$

Hence, (4x - 2y) : (7x - 3y) = 4 : 11.

12. The ratio of the marks in each subjects = 1 : 2 : 2 : 3Sum of the terms of ratio = 1 + 2 + 2 + 3 = 8Total marks obtained = 320

Marks in Maths =
$$\frac{1}{8} \times 320 = 1 \times 40 = 40$$

Marks in English = $\frac{2}{8} \times 320 = 2 \times 40 = 80$
Marks in Hindi = $\frac{2}{8} \times 320 = 2 \times 40 = 80$
Marks in Science = $\frac{3}{8} \times 320 = 3 \times 40 = 120$

13. The ratio of two numbers = 4 : 7Let the two numbers be 4*x* and 7*x*, where *x* is the constant of proportionality.Now, according to given condition,

 $(7x)^{2} - (4x)^{2} = 297$ $\Rightarrow \quad 49x^{2} - 16x^{2} = 297$ $\Rightarrow \quad 33x^{2} = 297$ $\Rightarrow \quad x^{2} = \frac{297}{33} = 9$ $\Rightarrow \quad x^{2} = 3^{2}$ $\Rightarrow \quad x = 3$

(Powers are equal, base will be equal) Hence, the required two numbers are $4 \times 3 = 12$ and $7 \times 3 = 21$.

14. Let the required two numbers be 5x and 8x.

L.C.M. of 5x and 8x = 40xAs per question, 40x = 200 $\Rightarrow \qquad x = \frac{200}{200}$

$$\begin{array}{c} 40 \\ x = 5 \\ \end{array}$$

 \Rightarrow

Hence, the required numbers are $5 \times 5 = 25$ and $8 \times 5 = 40$.

15. The ratio of boys to the girls = 5 : 3Sum of the terms of ratio = 5 + 3 = 8Let the total number of students in the school be *x*.

Now, Number of boys = $\frac{5}{8}$ × Total number of students

$$\Rightarrow \qquad 300 = \frac{5x}{8}$$

or
$$\frac{5x}{8} = 300$$

$$\Rightarrow \qquad 5x = 300 \times 8$$

$$\Rightarrow \qquad x = \frac{300 \times 8}{5} = 60 \times 8$$

$$x = 480$$

 \therefore Total number of students in school = 480. Number of girls = 480 - 300 = 180 Hence, there are 180 girls in the school.

EXERCISE 9.3

 (*i*) If 12, 18, 40, 60 are in proportion, then 12 : 18 : : 40 : 60. Product of extremes = 12 × 60 = 720 Product of means = 18 × 40 = 720 Product of extremes = product of means Hence, 12, 18, 40, 60 are in proportion.
 (*ii*) If 3, 5, 6, 10 are in proportion, then 3 : 5 : : 6 : 10. Product of extremes = 3 × 10 = 30 Product of means = 5 × 6 = 30 Product of extremes = product of means Hence, 3, 5, 6, 10 are in proportion. (*iii*) If 5, 8, 10, 16 are in proportion, then 5 : 8 : : 10 : 16.
Product of extremes = 5 × 16 = 80 Product of means = 8 × 10 = 80 Product of extremes = product of means Hence, 5, 8, 10, 16 are in proportion.

(*iv*) If 10, 12, 5, 6 are in proportion, then 10 : 12 : : 5 : 6.
Product of extremes = 10 × 6 = 60 Product of means = 12 × 5 = 60 Product of extremes = product of means Hence, 10, 12, 5, 6 are in proportion.

2. (*i*) 7 : P : : 35 : 45

Product of extremes = Product of means $7 \times 45 = P \times 35$

$$\Rightarrow \qquad P = \frac{7 \times 45}{35}$$
$$\Rightarrow \qquad P = 9$$

(*ii*) *P* : 8 : : 27 : 72

Product of extremes = Product of means $P \times 72 = 8 \times 27$

$$\Rightarrow P = \frac{8 \times 27}{72}$$
$$\Rightarrow P = 3$$
(*iii*) 3 : P : : 21 : 77

Product of extremes = Product of means $3 \times 77 = P \times 21$

$$\Rightarrow \qquad P = \frac{3 \times 77}{21}$$
$$\Rightarrow \qquad P = 11$$

(*iv*) P: 9: : 30: 54

Product of extremes = Product of means $P \times 54 = 9 \times 30$

$$\Rightarrow \qquad P = \frac{9 \times 30}{54}$$
$$\Rightarrow \qquad P = 5$$

3. Let the fourth proportional to 21, 10 and 84 be *x*. Then,

21:10::84:x

 $\Rightarrow \text{ Product of extremes = Product of means} \\ \Rightarrow 21 \times x = 10 \times 84$

 $\Rightarrow \qquad x = \frac{10 \times 84}{21}$ $\Rightarrow \qquad x = 10 \times 4$ $\Rightarrow \qquad x = 40$

Hence, the fourth proportional to 21, 10 and 84 is 40.

Mathematics In Everyday Life-7

4. Let the mean proportional between 6 and 24 be *x*. Then, 6: x :: x : 24 \Rightarrow Product of extremes = Product of means $6 \times 24 = x \times x$ \Rightarrow $x^2 = 144$ \Rightarrow $x^2 = (12)^2$ $(:: 144 = 12 \times 12)$ \Rightarrow \Rightarrow x = 12Hence, the mean proportional to 6 and 24 is 12. Taking 8 and 15 as the extremes, we get 12 and 10 as 5. means. Then, 8:12::10:15 $8 \times 15 = 12 \times 10$ \Rightarrow (:: Product of extremes = Product of means) \Rightarrow 120 = 120Now, we change the order of means. Then, 8:10::12:15 $8 \times 15 = 10 \times 12$ \Rightarrow (Product of extremes = Product of means) 120 = 120 \Rightarrow Now, we interchange the extremes and means 12:8::15:10 $12 \times 10 = 8 \times 15$ \Rightarrow (:: Product of extremes = Product of means) 120 = 120 \Rightarrow Now, we change the order of mean. 12:15::8:10 $12 \times 10 = 15 \times 8$ \Rightarrow (:: Product of extremes = product of means) 120 = 120 \Rightarrow Thus, the required proportions are 8:12::10:15; 8:10::12:15 12:8::15:10;12:15::8:10. 6. Let the number to be added in each of the given numbers be *x*. Then, (25 + x) : (35 + x) : : (40 + x) : (55 + x) \Rightarrow (25 + x) (55 + x) = (35 + x) (40 + x) (:: Product of extremes = Product of means) $1375 + 25x + 55x + x^2 = 1400 + 35x + 40x + x^2$ \Rightarrow $1375 + 80x + x^2 = 1400 + 75x + x^2$ \Rightarrow (Cancelling x^2 from both sides) 1375 + 80x = 1400 + 75x \Rightarrow 80x - 75x = 1400 - 1375 \Rightarrow 5x = 25 \Rightarrow $x = \frac{25}{5} = 5$ \Rightarrow

Hence, 5 is added to each number to get the given numbers in proportion.

- 7. Let the number to be subtracted from each of the given numbers be *x*. Then,
 - (27 x): (38 x): : (7 x): (8 x) \Rightarrow (27 - x) (8 - x) = (38 - x) (7 - x) (:: Product of extremes = Product of means) $216 - 27x - 8x + x^2 = 266 - 38x - 7x + x^2$

$$\Rightarrow 216 - 35x + x^{2'} = 266 - 45x + x^{2'}$$
(Cancelling x² from both sides)

$$\Rightarrow 216 - 35x = 266 - 45x$$

$$\Rightarrow - 35x + 45x = 266 - 216$$

$$\Rightarrow 10x = 50$$

$$\Rightarrow x = 5$$
Hence, 5 must be subtracted from each number to

be subtracted from each number to obtain remainders in proportion.

The scale of a map is 1 : 25000000 means that if the 8. distance of the map is 1 cm, then the actual distance is 25000000 cm.

25000000 cm = 250 km

(100000 cm = 1 km)

Distance on the map	Actual distance
1 cm	250 km
4 cm	x km

Therefore,

 \Rightarrow

 \Rightarrow

1:4::250:x $1 \times x = 250 \times 4$ x = 1000

Hence, the actual distance between the two towns is 1000 km.

9. Ratio of income to expenditure = 8:5Let the expenditure be $\mathbf{E} x$.

Income = ₹48000 (given)

Therefore,

 \Rightarrow

8:5 = 48000:x

 $8 \times x = 5 \times 48000$ \Rightarrow

(:: Product of extremes = Product of means)

$$r = \frac{5 \times 48000}{1000}$$

x = 30000 \Rightarrow

- Expenditure = ₹30000 ...
- Saving = Income Expenditure *:*. = ₹48000 - ₹30000 = ₹18000 Saving = ₹18000
- **10.** Ratio of income to the saving = 15 : 2 Yearly saving = ₹7500

Let the yearly income be *x*.

Therefore, 15: 2 = x: 7500

 $15 \times 7500 = 2 \times x$ \Rightarrow

(:: Product of extremes = Product of means)

- $x = \frac{15 \times 7500}{2}$ x = 56250Yearly income of the person = ₹56250
- Monthly income = $\mathbf{E}\left(\frac{56250}{12}\right)$

(:: 1 year = 12 months)

 \Rightarrow

 \Rightarrow

....

 \Rightarrow

= ₹4687.50 Hence, the monthly income of the person is ₹4687.50.

EXERCISE 9.4

- **1.** The cost of 8 books = $\overline{12}$
 - \therefore The cost of 1 book = $\overline{\P}\left(\frac{72}{8}\right) = \overline{\P}9$
 - The cost of 20 books = ₹(9 × 20) = ₹180. Hence, the cost of 20 books is ₹180.
- 2. The weight of 16 bags of rice = 240 kg
 - \therefore The weight of 1 bag of rice = $\frac{240}{16}$ kg = 15 kg
 - :. The number of bags that contain 90 kg of rice $=\frac{90}{15}=6$

Hence, 6 rice bags will weigh 90 kg.

- **3.** The cost of 13 toys = ₹117
 - \therefore The cost of 1 toy = $\underbrace{\underbrace{117}}_{13} = \underbrace{19}$
 - ∴ The cost of 10 toys = $\overline{\langle}(9 \times 10) = \overline{\langle}90$

Hence, the cost of 10 toys is \gtrless 90.

- The cost of 25 apples = ₹65 4.
 - \therefore The cost of 1 apple = $\mathbf{E}\left(\frac{65}{25}\right)$
 - ∴ The cost of 45 apples = ₹ $\left(\frac{65}{25} \times 45\right)$ = ₹117

Hence, the cost of 45 apples is ₹117.

Time taken to cover 13 km = 1 hour 5.

Time taken to cover 1 km = $\frac{1}{12}$ hour

Time taken to cover 65 km = $\frac{65}{13}$ hours = 5 hours Hence, Sunil will cover 65 km in 5 hours.

- The weight of 7 containers of milk = 224 kg 6.
 - \therefore The weight of 1 container of milk = $\frac{224}{7}$ kg (Less containers, less milk) = 32 kg

The weight of 11 such containers of milk *.*..

 $= 32 \times 11 \text{ kg}$

= 352 kg

(More containers, more milk)

Hence, the weight of 11 containers of milk is 352 kg. In 3 hours, labourer earns = ₹156

 $\therefore \quad \text{In 1 hour, labourer earn} = \operatorname{\mathbb{E}}\left(\frac{156}{3}\right)$

7.

(Less hours, less money)

∴ In 7 hours, labourer earns = ₹(52 × 7)

(More hours, more money)

=₹ 364

Hence, he will earns ₹364 in 7 hours.

8. Let the number of cartons required be *x*.

Then,
$$\frac{1464}{2318} = \frac{12}{x}$$

 $\Rightarrow \qquad x = \frac{12 \times 2318}{1464} = 19$

Hence, 19 cartons will be needed to pack 2318 apples. 9. Length of iron rod weighing 82.15 kg = 24.8 m

Length of iron rod weighing 1 kg = $\frac{24.8}{82.15}$ m

Length of iron rod weighing 26.5 kg = $\frac{24.8 \times 26.5}{82.15}$ m = 8 m

Hence, length of iron rod weighing 26.5 kg is 8 m.

- The monthly expenditure of a boarding house for 25 10. children = ₹ 24500
 - Monthly expenditure for 1 child = $\overline{\langle} \left(\frac{24500}{25}\right)$ (Less children, less expenditure) =₹ 980
 - Monthly expenditure for 18 children = ₹ (980 × 18) =₹ 17640

(More children, more expenditure) Hence, monthly expenditure of a boarding school for 18 children is ₹ 17640.

11. Distance covered by Ganesh in 2 hours = 8 km

Distance covered by Ganesh in 1 hour = $\frac{8}{2}$ km = 4 km

Distance covered by Ganesh in 45 min. $\left(\text{ or } \frac{45}{60} \text{ hour} \right)$

$$= 4 \times \frac{45}{60}$$
 km = 3 km

Ganesh can cover 3 km in 45 minutes.

Mathematics In Everyday Life-7

12. In 1 hour, the train covers a distance = 60 km In 5 hours, the train covers a distance = 5×60 km *.*.. = 300 km

Hence, the train covers 300 km in 5 hours.

- The cost of travelling a distance of 900 km by train 13. = ₹225
 - The cost of travelling 1 km by train = $\mathbf{E}\left(\frac{225}{900}\right)$...

(Less km, less fare)

The cost of travelling 360 km by train ...

$$= ₹\left(\frac{225}{900} \times 360\right)$$

= ₹90 (More km, more fare)

Hence, the cost of travelling 360 km by the train is ₹90.

EXERCISE 9.5

- 1. 210 men can complete a piece of work in 44 days. \therefore 1 man can complete same piece of work in (44 × 210)
 - days. (Less men, more days)
 - 280 men will complete same piece of work *.*..

in
$$\frac{44 \times 210}{280}$$
 days

(More men, less days)

Hence, 280 men will take 33 days to complete the work.

Alternative method:

No. of men
No. of days

$$210 \qquad 44 \qquad 1 \qquad x$$

$$\therefore 210 \times 44 = 280 \times x \qquad \text{(Inverse proportion)}$$

$$\Rightarrow \qquad x = \frac{210 \times 44}{280} = 33 \text{ days}$$
No. of cows
No. of days

2.

 $\begin{array}{c} 12 \\ 9 \end{array} \downarrow$ $63 \times 12 = x \times 9$ (Inverse proportion) ÷. $x = \frac{63 \times 12}{9}$ \Rightarrow x = 84

Hence, 84 cows will graze the same field in 9 days. 3. No. of boys No. of days

100	40	↑
160 ↓	x	
$100 \times 40 = 160 \times x$		(Inverse proportion)
\Rightarrow $r = \frac{100 \times 40}{100 \times 40}$	0	

$$x = 25$$
¹⁶⁰

:..

Hence, the provisions will last for 25 days.

$$\Rightarrow \qquad x = \frac{51 \times 12}{36}$$
$$x = 17$$

Hence, 36 men will take 17 days.

5. No. of men No. of months

360 |

$$360 \times 11 = x \times 9$$
 (Inverse proportion)

$$\Rightarrow \qquad x = \frac{360 \times 11}{9}$$

$$x = 440$$
No. of extra men = 440 - 360 = 80

11 🛧

Hence, 80 extra men must be employed to complete the work in 9 months.

- 6. 600 passengers have provisions for 50 days.
 - :. 1 passenger has provisions for (50 × 600) days (less passengers, more days)
 - $\therefore (600 + 150) = 750 \text{ passengers have provisions}$ for $\frac{50 \times 600}{750}$ days = 40 days

(More passengers, less days)

Hence, the provisions will last for 40 days.

- 7. 40 students have provisions for 45 days.
 - :. 1 student has provisions for (40 × 45) days (Less students, more days)
 - \therefore (40 + 10) = 50 students have provisions for

 $\frac{40 \times 45}{50}$ days (More students, less days)

= 36 days

Hence, the provisions will last for 36 days.

8. 400 cadets have food for 25 days.

 \therefore 1 cadet has food for (400 × 25) days.

(Less cadets, more days) Since, 150 cadets are shifted to some other camp. Therefore,

 $\therefore (400 - 150) = 250 \text{ cadets have food for}$ $\frac{400 \times 25}{250} \text{ days.} \qquad \text{(More cadets, less days)}$

= 40 days

Hence, the food will last for 40 days.

9. No. of men No. of days

50	60 ↑
75 ↓	x
$\therefore 50 \times 60 = 75 \times x$	(Inverse proportion)

$$x = \frac{50 \times 60}{75}$$
$$x = 40$$

 \Rightarrow

Hence, 75 men will take 40 days to dig the trench.10. No. of men No. of days

Hence, 27 men will take 2 days.

11. speed (in km/hr) time (in hrs.)

$$\begin{array}{cccc}
60 & \uparrow & 4\frac{1}{3} \\
40 & \uparrow & x \\
\therefore & 60 \times \frac{13}{3} = 40 \times x \\
\Rightarrow & x = \frac{60 \times 13}{40 \times 3} \\
& x = 6\frac{1}{2}
\end{array}$$
(Inverse proportion)

Hence, the bus will take $6\frac{1}{2}$ hours to cover the distance.

MULTIPLE CHOICE QUESTIONS

1.
$$\therefore$$
 16, 64, *x* and 72 are in proportion.
Then, 16 : 64 : : *x* : 72
Product of extremes = product of means
16 × 72 = 64 × *x*
 \Rightarrow $x = \frac{16 \times 72}{64} = 18$

Hence, option (*b*) is correct.

2. Cost of 20 pens = $\overline{100}$

$$\therefore \quad \text{Cost of 1 pen} = \mathbb{E}\left(\frac{50}{20}\right)$$

(Less pens, less cost)

$$\therefore \quad \text{Cost of 50 pens} = \mathbf{E}\left(\frac{50}{20} \times 50\right)$$

(More pens, more cost)

Hence, option (*a*) is correct.

3.
$$3: 17 = x: 102$$

 $\Rightarrow 3 \times 102 = 17 \times x$

(: Product of extremes = product of means)

$$\Rightarrow \qquad x = \frac{3 \times 102}{17} = 18$$

Hence, option (*d*) is correct.

4. 7: x:: 35: 45 $\Rightarrow 7: x = 35: 45$ $\Rightarrow 7 \times 45 = x \times 35$ (Product of extremes = Product of means) $\Rightarrow x = \frac{7 \times 45}{35} = 9$

Hence, option (*c*) is correct.

- 5. 10 men can dig the same trench in 9 days.
 - ∴ 1 man can dig the same trench in (9 × 10) days. (Less men, more days)

 \therefore 15 men can dig the same trench in $\frac{9 \times 10}{15}$ days

(More men, less days)

= 6 days

Hence, option (*b*) is correct.

6. In 1 hour (3600 sec), train covers a distance = 36000 m

(1 hr = 3600 sec, 1 km = 1000 m) \therefore In 1 sec, the train covers a distance = $\frac{36000}{3600}$ m = 10 m

:. In 20 sec, the train will a distance cover = 10×20 m = 200 m

Distance covered in crossing the pole = length of the train

Hence, option (*b*) is correct.

7. In
$$\left(\frac{1}{2}$$
 hr = 30 mins. $\right)$, Rakesh can type = 2100 words

- \therefore In 1 min. Rakesh can type = $\frac{2100}{30}$ words
- \Rightarrow In 5 minutes, Rakesh can types = $\frac{2100}{30} \times 5$

= 350 words Hence, option (*a*) is correct.

8. In 6 min, the cyclist covers a distance = 1 km

 \therefore In 1 min, the cyclist covers a distance = $\frac{1}{6}$ km

 \therefore In 60 min (1 hr), the cyclist covers a distance

$$=\left(\frac{1}{6}\times 60\right)$$
km

= 10 km

Thus, speed of cyclist = 10 km/hrs Hence, option (*a*) is correct.

9. *A* : *B* = 2 : 3 and *B* : *C* = 4 : 5 Hence, *A* : *C* = 2 × 4 : 3 × 5 = 8 : 15

Hence, option (*a*) is correct.

Mathematics In Everyday Life-7

10. Let the number to be added to each term of the ratio be *x*. Then, (7 + x) : (12 + x) = 2 : 3 $\Rightarrow \frac{7 + x}{12 + x} = \frac{2}{3}$ $\Rightarrow 3 (7 + x) = 2 (12 + x)$ (By cross multiplication) $\Rightarrow 21 + 3x = 24 + 2x$ $\Rightarrow 3x - 2x = 24 - 21$ (By transposing)

 $\Rightarrow \qquad x = 3$ Thus, 3 must be added to each term.

Hence, option (*d*) is correct.

11. Let the number to be subtracted from each term be *x*. Then,

$$\frac{(17-x)}{(11-x)} = \frac{2}{1}$$

$$\Rightarrow (17-x) = 2(11-x)$$

$$\Rightarrow 17-x = 22-2x$$

$$\Rightarrow 2x-x = 22-17$$

$$\Rightarrow x = 5$$
Hence, option (b) is correct.

12. 2A = 3B = 4C.

L.C.M. of 2, 3 and 4 is 12.

Dividing each term by 12, we get

$$\frac{2A}{12} = \frac{3B}{12} = \frac{4C}{12}$$
$$\frac{A}{6} = \frac{B}{4} = \frac{C}{3}$$

Thus,

A: B: C = 6: 4: 3Hence, option (*b*) is correct.

MENTAL MATHS CORNER

- **1.** 30 : *P* : : 50 : 75
 - 30: P = 50: 75
 - $\Rightarrow \qquad 30 \times 75 = P \times 50$

(:: Product of extremes = Product of means)

$$\Rightarrow \qquad P = \frac{30 \times 75}{50} = 45$$

The number 30, *P*, 50 and 75 are in proportion, then the value of *P* is **45**.

- 2. In 3 hours, the car covers a distance = 120 km
 - \therefore In 1 hour, the car covers a distance = $\frac{120}{3}$ km = 40 km

 \therefore In 4 hours, the car covers a distance = 40 × 4 km = 160 km

A car travels 120 km in 3 hours. In 4 hours, it will cover a distance of **160 km**.

3. The ratio of 2 weeks to 6 days = 2 weeks : 6 days

$$= \frac{2 \text{ weeks}}{6 \text{ days}}$$
$$= \frac{2 \times 7 \text{ days}}{6 \text{ days}} \qquad (1 \text{ week} = 7 \text{ days})$$
$$= \frac{7}{3} = 7 : 3$$

will be equal)

- The ratio of 2 weeks to 6 days is equal to 7:3.
- 4. Let the mean proportional to 9 and 25 be x. Therefore, 9 : *x* : : *x* : 25

$$\begin{array}{ll} \therefore & 9: x = x : 25 \\ \Rightarrow & 9 \times 25 = x^2 \\ \Rightarrow & x^2 = 225 \\ \Rightarrow & x^2 = (15)^2 \\ & (Powers are equal, base) \\ \Rightarrow & x = 15 \end{array}$$

The mean proportional to 9 and 25 is 15.

5. Sum of the terms of ratio = 3 + 4 = 7. Then,

A's share = ₹
$$\left(\frac{3}{7} \times 210\right)$$
 = ₹90
B's share = ₹ $\left(\frac{4}{7} \times 210\right)$ = ₹120

If ₹210 is divided between *A* and *B* in the ratio 3:4, then *B*′s share is ₹120.

6. If 6, x, 24 are in continued proportion,

then, 6: x :: x : 24. ÷ 6: x = x: 24 $6 \times 24 = x \times x$ \Rightarrow $x^2 = 144$ \Rightarrow $x^2 = (12)^2$ \Rightarrow x = 12 \Rightarrow

If 6, *x*, 24 are in continued proportion, then *x* is equal to 12.

7. Let the third proportional to 8 and 12 be *x*. Then,

8 : 12 : : 12 : *x* 8:12 = 12:x*.*.. $8 \times x = 12 \times 12$ \Rightarrow $x = \frac{144}{8} = 18$ \Rightarrow

The third proportional to 8 and 12 is 18.

8. Let the breadth of the rectangular field be *x*. Then, length of the rectangular field = 2xThus, perimeter of rectangular field

 $= 2 \times (\text{length} + \text{breadth}) = 2(2x + x) = 2(3x) = 6x$

:. Perimeter = 48 m

6x = 48

$$x = \frac{48}{6} = 8$$

 \Rightarrow

The length of a rectangular field is twice its breadth. If the perimeter of the field is 48 m, then its breadth is 8 m.

REVIEW EXERCISE

1. The ratio of male and female workers = 7:6Let the number of female workers be *x*. Therefore,

$$7: 6 = 203: x$$

$$\Rightarrow \qquad 7 \times x = 6 \times 203$$

$$\Rightarrow \qquad x = \frac{6 \times 203}{7} = 174$$

Hence, there are 174 female workers in the factory.

- **2.** (2x + 3) : (3x + 2) = 5 : 7 $\Rightarrow \quad \frac{2x+3}{3x+2} = \frac{5}{7}$ \Rightarrow 7(2x + 3) = 5(3x + 2) (By cross multiplication) \Rightarrow 14x + 21 = 15x + 10 $\Rightarrow 15x - 14x = 21 - 10$ x = 11 \Rightarrow Hence, the value of x is 11.
- 3. Let the number to be added in each term of the ratio be *x*. Then,

$$(3 + x) : (5 + x) = 4 : 5$$

$$\Rightarrow \qquad \frac{3 + x}{5 + x} = \frac{4}{5}$$

$$\Rightarrow \qquad 5(3 + x) = 4(5 + x) \quad (By cross multiplication)$$

$$\Rightarrow \qquad 15 + 5x = 20 + 4x$$

$$\Rightarrow \qquad 5x - 4x = 20 - 15$$

$$\Rightarrow \qquad x = 5$$

Hence, 5 must be added.

4. Let the two numbers be 5x and 7x. As per question

$$(7x)^2 - (5x)^2 = 216$$

$$\Rightarrow 49x^2 - 25x^2 = 216$$

$$\Rightarrow 24x^2 = 216$$

F

$$\Rightarrow \qquad x^2 = \frac{216}{24} = 9$$
$$\Rightarrow \qquad x = 3$$

Hence, the required numbers are $5 \times 3 = 15$ and $7 \times 3 = 21$.

5. Let the antecedent be *x*. Then,

$$8: 11 = x: 66$$

$$\Rightarrow \qquad 8 \times 66 = 11 \times x$$

$$\Rightarrow \qquad x = \frac{8 \times 66}{11} = 48$$

Hence, the antecedent is 48.

Answer Keys

6. The given ratios are 4 : 3, 3 : 4, 5 : 8, 6 : 9

or $\frac{4}{3}, \frac{3}{4}, \frac{5}{8}, \frac{6}{9}$

L.C.M. of 3, 4, 8 and 9 is 72.

$$\frac{4}{3} = \frac{4 \times 24}{3 \times 24} = \frac{96}{72}$$
$$\frac{3}{4} = \frac{3 \times 18}{4 \times 18} = \frac{54}{72}$$
$$\frac{5}{8} = \frac{5 \times 9}{8 \times 9} = \frac{45}{72}$$
$$\frac{6}{9} = \frac{6 \times 8}{9 \times 8} = \frac{48}{72}$$

- The denominators are same. *.*..
- The given ratios in ascending order are •
 - 45 48 54 96 $\overline{72}' \overline{72}' \overline{72}' \overline{72}' \overline{72}$ $\frac{5}{8}, \frac{6}{9}, \frac{3}{4}, \frac{4}{3}$

Hence, 5:8, 6:9, 3:4, 4:3 are in ascending order.

7. Let the number to be added to each of the given numbers be *x*.

Then, (10 + x) : (17 + x) : (24 + x) : (38 : x)*.*.. (10 + x) (38 + x) = (17 + x) (24 + x)(:: Product of extremes = Product of means) $380 + 10x + 38x + x^2 = 408 + 17x + 24x + x^2$ \Rightarrow $380 + 48x + x^2 = 408 + 41x + x^2$ \Rightarrow (Cancelling x^2 from both sides) 48x - 41x = 408 - 380 \Rightarrow 7x = 28 \Rightarrow

Hence, 4 must be added to each of the given numbers.

 $x = \frac{28}{7} = 4$

8. Let the fourth term be *x*. Then,

5:7:35:x

 \Rightarrow

- 5:7=35:x \Rightarrow
- $5 \times x = 7 \times 35$ \Rightarrow
 - (:: Product of extremes = Product of means)

 $x = \frac{7 \times 35}{5} = 49$ \Rightarrow

Hence, fourth term is 49.

- The cost of 30 metres of cloth = ₹ 420 9.
 - The cost of 1 metre of cloth = $\overline{\mathbf{x}}\left(\frac{420}{30}\right) = \overline{\mathbf{x}}\mathbf{14}$

(Less length, less cost)

The cost of 48 metres of cloth = ₹ (14 × 48) *:*.. =₹ 672

Hence, the cost of 48 metres of cloth is ₹ 672.

Mathematics In Everyday Life-7

10. Let the earnings of 18 workers be $\overline{\mathbf{x}}$. It is a case of direct variation.

$$\therefore \quad \frac{25}{1875} = \frac{18}{x}$$
$$\Rightarrow \qquad x = \frac{18 \times 1875}{25} = 1350$$

Hence, the earnings of 18 workers are ₹1350 per day.

- \therefore 1 workers earn per day = $\underbrace{\underbrace{1875}_{25}}$
- ∴ 18 workers will earn per day = ₹ (75 × 18) = ₹ 1350

Hence, 18 workers will earn ₹1350 per day.

- **11.** 30 men can dig a trench in 54 days.
 - \therefore 1 man can dig the same trench in (54 × 30) days. (Less men, more days)
 - \therefore 18 men can dig the same trench in $\left(\frac{54 \times 30}{18}\right)$ days

(More men, less days)

Hence, 18 men will take 90 days to dig the trench. Alternative method:

No. of days

54

x

Let 18 men will take *x* days to dig the trench.

$$\begin{array}{c} 30\\18 \end{array}$$

 \therefore 30 × 54 = 18 × x

(Indirect variation)

$$\Rightarrow \qquad x = \frac{30 \times 54}{18} = 90$$

HOTS QUESTIONS

1. The ratio of Sunidhi's height to her shadow = 3 : 1 At the same time, the length of shadow of a tree = 14 ft. Let the height of the tree be *x* ft.

Then,
$$3: 1 = x : 14$$
 (Direct variation)
 $\Rightarrow 3 \times 14 = 1 \times x$
 $\Rightarrow x = 42$

Hence, the height of tree is 42 ft.

2.
$$9: 12: 18 = x: y: 12$$

$$\therefore \qquad 9: 12 = x: y \qquad ...(i) \\ and \qquad 12: 18 = y: 12 \qquad ...(ii)$$

From (*ii*),
$$\frac{12}{18} = \frac{y}{12}$$

 \Rightarrow

$$y = \frac{12 \times 12}{18} = 8$$

Putting the value of
$$y$$
 in (i), we get

$$9: 12 = x: 8$$

$$\frac{9}{12} = \frac{x}{8}$$

$$\Rightarrow \qquad x = \frac{9 \times 8}{12} = 6$$
Hence, $x = 6, y = 8$.

 \Rightarrow

Page 158

U		
Traveller	No. of loaves	No. of coins
1	5	-
2	3	-
3	-	8

Total numbers of loaves = 5 + 3 = 8It is to be distributed in 3 travellers.

Share of each traveller = $\frac{8}{3}$ loaves. = $2\frac{2}{3}$ loaves.

Now, the third traveller will pay 8 coins for his share of $2\frac{2}{3}$ loaves.

First traveller gave $\left(5-\frac{8}{3}\right) = \frac{7}{3}$ loaves and second traveller gave $\left(3 - \frac{8}{3}\right) = \frac{1}{3}$ loaf to the

third one.

The money should be divided between two travellers in the ratio equal to the shares of loaves given by them to third traveller.

Required ratio = $\frac{7}{3}:\frac{1}{3}=\frac{7}{3}\times 3:\frac{1}{3}\times 3=7:1$

First traveller should get 7 coins whereas the second traveller should get 1 coin.

Page 163

Let the lengths of train and tunnel be *x* and *y* metres respectively.

Speed of train = 96 km/hr

$$= 96 \times \frac{5}{18} \text{ m/se}$$
$$= \frac{80}{3} \text{ m/sec}$$

To enter a tunnel, the train covers a distance equal to its length.

Distance = Speed × Time

$$x = \frac{80}{3} \times 3$$
$$x = 80$$

To pass the tunnel, the train covers a distance equal to the sum of its length and length of the tunnel.

Distance = Speed × Time $(80 + y) = \frac{80}{3} \times 33$ [:: Time = (30 + 3) seconds = 33 seconds] $(80 + y) = 80 \times 11$ 80 + y = 880y = 880 - 80 = 800Length of the train = 80 m

Length of the tunnel = 800 m

VALUE BASED QUESTION SUMMATIVE ASSESSMENT

Let the quantity of milk and water in the mixture be 4x and x respectively.

$$4x + x = 35$$

 $5x = 35$ $x = 7$

Original quantity of milk = $4 \times 7 = 28$ litres

Original quantity of water = 7 litres.

Then, he adds another 7 litres of water.

Quantity of water in resulting mixture = (7 + 7) litres = 14 litres

Ratio of milk and water in resulting mixture = 28 litres : 14 litres

$$= \frac{28 \text{ litres}}{14 \text{ litres}}$$
$$= \frac{28}{14} = \frac{2}{1} = 2 : 1$$

The milk man is **dishonest** as he mixes water into milk.

Answer Keys